Effects of Coadsorbed Oxygen on the Infrared Driven Decomposition of N$_2$O on Isolated Rh$_5^{+}$ Clusters

Alexander C. Hermes,‡ Suzanne M. Hamilton,† W. Scott Hopkins,‡,§ Dan J. Harding,‡ Christian Kerpal,‡ Gerard Meijer,‡ André Fielicke,*,‡ and Stuart R. Mackenzie*,‡

†Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, U.K.
‡Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin, D-14195, Germany

Supporting Information

ABSTRACT: The thermally induced decomposition of nitrous oxide on isolated Rh$_5^{+}$ and Rh$_5$O$^+$ clusters has been investigated using mid-infrared multiple photon dissociation spectroscopy. The presence of a single coadsorbed oxygen atom is observed to have a profound effect on the cluster surface processes that ensue following infrared heating of the cluster. Exciting the infrared active N$_2$O bending transition in Rh$_5$N$_2$O$^+$ results predominately (\geq85%) in molecular desorption of the N$_2$O moiety, while the same excitation in Rh$_5$ON$_2$O$^+$ leads instead to N$_2$O dissociation on the cluster surface producing Rh$_5$O$_2$$^+$ (\geq85%). Calculations of the reaction pathway using density functional theory indicate that the change in branching ratio arises from a 0.4 eV greater binding energy of N$_2$O to Rh$_5$O$^+$ compared with Rh$_5^{+}$, taking the desorption threshold above the reaction barrier for the surface reaction channel whose energy is unchanged.

SECTION: Dynamics, Clusters, Excited States

It is well established that in the nanocluster regime of less than 20 or so atoms, metal particles exhibit unique size-dependent physical and chemical properties. Indeed, developing a better understanding of the evolution of the geometric and electronic structure of isolated clusters with size remains a central aim of cluster science. Nowhere is this more challenging than for transition metal clusters for which, despite their relevance to practical catalysts, a coherent picture is yet to emerge.

Real heterogeneous catalysts often involve reaction at small imperfections or defect sites, rather than at bulk crystalline surfaces. The appealing idea that small transition metal clusters, with no long-range order at all, may represent experimentally and computationally tractable model systems for such defects has sparked intense interest in isolated transition metal clusters. One environmentally important process, the reduction of nitrogen oxides on rhodium clusters, has been the subject of a number of recent studies by (part of) this group and others.

It is well established that atomic and molecular adsorbates can dramatically affect the reactivity of a catalytic metal surface, promoting or inhibiting (‘poisoning’) various processes. Such effects can arise due to the geometry of adsorption (blocking) or through electronic effects, and they form an important part of understanding the activity of a catalyst. In turn, cooperative and competitive binding effects, in which the adsorption of one species affects the binding of another, can play similarly profound roles in governing the reactivity of small isolated metal clusters such as gold clusters. This paper describes just such an effect involving the oxygen enhanced binding of nitrous oxide on small rhodium clusters.

In the gas phase, infrared multiple photon dissociation (IR-MPD) spectroscopy has become the technique of choice for measuring the vibrational spectra of transition metal clusters. In this technique the absorption of IR photons is detected by the loss of mass spectrometric techniques. The high fluence and wide wavelength tuneability of modern laser sources combined with the inherent sensitivity of mass spectrometry permits the measurement of size-specific vibrational spectra of metal clusters in low-density molecular beams.

Very recently, we have shown that resonant IR absorption may also be used to trigger chemical reactivity on the surface of isolated metal clusters. In a cluster analogue of a temperature programmed reaction, Rh$_5$N$_2$O$^+$ cluster complexes may be excited via the nitrous oxide vibrational modes, resulting in heating of the complexes and the subsequent dissociation of the molecularly adsorbed N$_2$O moiety. The net result is the production of the oxide cluster, Rh$_5$O$^+$, and molecular nitrogen which desorbs. For most cluster sizes, this reaction occurs as a significant minor channel along with simple N$_2$O desorption. Reflecting the thermal nature of the chemistry involved, the IR-induced reaction was observed for each of the cluster sizes $n = 4, 6, 8$ with comparable efficiency, irrespective of the vibrational mode pumped. Uniquely in the cluster size range studied, Rh$_5$N$_2$O$^+$ exhibits markedly reduced surface reactivity, with N$_2$O desorption dominating.

Received: September 23, 2011
Accepted: November 16, 2011
Published: November 16, 2011
Here, we report the results of a combined experimental and computational study into the anomalously inert Rh$_5$N$_2$O$^+$ complex.

All experiments were performed at the Free Electron Laser for Infrared eXperiments (FELIX) facility in The Netherlands.19 Rh$_4^+$ and Rh$_5$O$^+$ clusters with molecularly adsorbed nitrous oxide molecules were generated as described previously17,18 and irradiated by the FELIX infrared beam in the spectral region $20\,\mu$m $> \lambda > 14.5\,\mu$m ($500 - 690 \,\text{cm}^{-1}$), which covers the N$_2$O bend and O--Rh$_n^+$ stretch fundamental transitions.

The mid-infrared free electron laser beam counter propagates along the molecular beam, and the two beams temporally overlap before the clusters enter the extraction region of a reflectron time-of-flight mass spectrometer. Mass spectra are collected at a frequency of 10 Hz with the free electron laser enabled every other cycle. IR-MPD spectra are obtained by monitoring the difference in mass spectra recorded with and without the FELIX beam as a function of varying IR photon wavelength. Depletions of parent ion peaks and corresponding enhancements in product peaks serve as a mass spectrometric signal for photon absorption and/or infrared-driven cluster reactivity. All IR spectra are recorded using 0.05 μm wavelength (\sim1 cm$^{-1}$) steps and are averaged over several runs.

The experimental mass spectrum in the region of the Rh$_5^+$ cluster is shown in Figure 1a. All major mass peaks can be assigned to Rh$_5^+$ clusters complexed with nitrous oxide (Rh$_5$(N$_2$O)$_{\lambda}^+$), oxygen (Rh$_5$O$_x^+$), or combinations thereof. Figure 1b shows the effect on the mass spectrum of irradiating the cluster beam in the spectral region of the N$_2$O bend/O--Rh$_n^+$ stretch fundamental transitions (which, for Rh$_n^+$, are spectrally unresolved). In such a difference mass spectrum, a negative signal represents the depletion of particular species upon irradiation. Analogously, a positive peak signifies enhancement of the signal in a particular mass channel resulting from IR-induced fragmentation of a larger mass species. By recording the variation in both parent and daughter ion mass channels as a function of IR wavelength, it is possible to determine the major fragmentation channels for each species.

Both the Rh$_5$(N$_2$O)$_{\lambda}^+$ ($\lambda = 1 - 3$) and Rh$_5$O$_x$(N$_2$O)$_{\lambda}^+$ ($\lambda = 1 - 3$) signals exhibit large depletion upon irradiation, indicating that these species undergo some form of IR-induced fragmentation. The nature of the processes leading to the loss of these ion signals may be deduced from Figure 1b as well as from the IR spectra recorded simultaneously in all mass channels. Example spectra for species of particular interest are shown in Figure 2. These spectra enable depletions in one mass channel to be compared quantitatively with concomitant enhancements in other channels identifying the fragmentation processes involved. In particular, comparison of the (spectrally integrated) absolute depletions and enhancements in the various spectra provides important information on the branching ratios for various surface processes that ensue. N$_2$O desorption from larger clusters, e.g., Rh$_5$(N$_2$O)$_{\lambda}^+$, is observed both as a depletion in the parent Rh$_5$(N$_2$O)$_{\lambda}^+$ signal and as an enhancement in the Rh$_5$(N$_2$O)$_{\lambda}^+$ channel but can be accounted for by virtue of the spectral red shift in the Rh$_5$(N$_2$O)$_{\lambda}^+$ signal.

Consistent with our earlier findings, the depletion in the Rh$_5$N$_2$O$^+$ signal is accompanied by a significant enhancement in the bare Rh$_5^+$ signal, indicating that the predominant process is a simple N$_2$O desorption (blue solid line, Figure 1b; left-hand side Figure 2). By contrast, only a minimal increase in the Rh$_5$O$^+$ signal is observed above the noise level. From the ratio of the integrated enhancements observed in each product channel, we
estimate that the desorption process accounts for \(\geq 85\% \) of products observed.

These reaction/desorption branching ratios are reversed completely in the case of the \(\text{Rh}_5\text{ON}_2\text{O}^+ \) complex. In this case, the minimal \(\text{Rh}_5\text{O}^+ \) enhancement indicates the minor role of the \(\text{N}_2\text{O} \) loss channel (blue dashed line, Figure 1b; right-hand side Figure 2). Instead, the dominant enhancement observed is in the dioxide cluster signal, \(\text{Rh}_5\text{O}_2^+ \), consistent with a highly efficient cluster surface reaction resulting in \(\text{N}_2\text{O} \) decomposition (solid red line, Figure 1b). This time it is the reactive channel that accounts for \(\geq 85\% \) of the products observed.

In short, a single coadsorbed oxygen atom is enough to transform the fate of the \(\text{Rh}_5\text{N}_2\text{O}^+ \) cluster when subjected to infrared heating. The results can be summarized as follows:

\[
\begin{align*}
\text{Rh}_5(\text{N}_2\text{O})^+ + \text{IR} & \rightarrow \text{Rh}_5^+ + \text{N}_2 \geq 85\% \\
\text{Rh}_5\text{O}^+ + \text{N}_2 & \leq 15\%
\end{align*}
\]

\[
\begin{align*}
\text{Rh}_5\text{O}^+ (\text{N}_2\text{O})^+ + \text{IR} & \rightarrow \text{Rh}_5\text{O}^+ + \text{N}_2 \leq 15\% \\
\text{Rh}_5\text{O}_2^+ + \text{N}_2 & \geq 85\%
\end{align*}
\]

Qualitatively similar enhancements in the reactive channel for the O-adduct species are also observed for other cluster sizes, e.g., \(n = 6 \). However, these are less pronounced, as the \(\text{N}_2\text{O} \) decomposition channel is already a significant minor channel. Figure 2 also shows the calculated spectrum in this region at the density functional theory (DFT) level using the TPSSh functional \(^{20}\) and the def2-TZVP basis set. \(^{21}\) The spectral splitting in the \(\text{N}_2\text{O} \) bend region of the \(\text{Rh}_5\text{N}_2\text{O}^+ \) has previously been resolved in cryogenically cooled rare-gas tagging experiments at low IR fluence but is unresolved here. \(^{18}\) Likewise, in the \(\text{Rh}_5\text{ON}_2\text{O}^+ \) the \(\text{N}_2\text{O} \) bend and \(\text{O} - \text{Rh}_5^+ \) bands are also unresolved. However, for \(\text{Rh}_6\text{N}_2\text{O}^+ \) and \(\text{Rh}_5\text{ON}_2\text{O}^+ \), we have shown previously that the surface chemistry exhibits no particular mode-selectivity, with each strongly active IR mode equally efficient in driving the cluster surface decomposition reaction. \(^{18}\) We therefore expect the surface chemistry to be equally efficient across the merged band in \(\text{Rh}_5\text{ON}_2\text{O}^+ \).

In an attempt to better understand the effects of the coadsorbed O atom, we have undertaken a detailed computational study of the energetically low-lying structures of the \(\text{Rh}_5\text{N}_2\text{O}^+ / \text{Rh}_5\text{ON}_2\text{O}^+ \) clusters and the pathway for reaction. All calculations were carried out using DFT as implemented in the Turbomole v6.1 package. \(^{22,23}\) As discussed previously, \(^{18}\) no single exchange–correlation functional is ideal for all of the calculations necessary: low energy structure optimizations, spectral simulations, and reaction pathways. However, the TPSSh \(^{20}\) meta-hybrid functional provides a good compromise for all three calculations. Triple-\(\zeta \) valence basis sets (def2-TZVP) \(^{21,24}\) were used for all atoms, with def2-ecp effective core potentials for the rhodium atoms.

The starting points for the structure calculations were the low energy structures of the bare \(\text{Rh}_n^+ \) clusters for which experimental evidence exists in the form of recent IR-MPD spectra. \(^{15,16}\) A wide range of spin states as well as potential oxygen and \(\text{N}_2\text{O} \) binding arrangements was explored, and a table of the low-lying structures of the \(\text{Rh}_5\text{ON}_2\text{O}^+ \) species identified based on both trigonal bipyramid (TBP) and square-based pyramid (SBP) structures is provided in the Supporting Information (SI) associated with this article. Normal mode analyses confirmed the identity of minima or transition states as well as providing the spectral simulations.

Qualitatively similar surface reaction pathways (\(\text{N}_2\text{O} \) dissociation followed by \(\text{N}_2 \) loss) to that identified for the \(\text{Rh}_5\text{N}_2\text{O}^+ \) were found on all low-lying structures of both \(\text{Rh}_n\text{N}_2\text{O}^+ \) and \(\text{Rh}_5\text{ON}_2\text{O}^+ \) clusters. A complete set of these calculated reaction pathways for structures lying within 0.1 eV of the putative global minimum structure is given in the SI, but a representative example is given in Figure 3. Note that in all cases the final structures are those arrived at using the vector following method. The calculated global minimum structures of these species are given in the SI.

The key factor in determining the branching ratios for reaction versus \(\text{N}_2\text{O} \) desorption is the relative barrier height for the two processes. In order for the surface reaction to compete efficiently with the desorption process, the barrier for the former must lie below the \(\text{N}_2\text{O} \) desorption energy, otherwise the large pre-exponential (entropic) factor in the effective rate will favor \(\text{N}_2\text{O} \) loss. Table 1 summarizes the calculated values for the \(\text{N}_2\text{O} \) desorption energy and barrier height for the reaction on various low-lying structures. As we have previously reported, \(^{18}\) we calculate four low-lying isomers of \(\text{Rh}_5\text{N}_2\text{O}^+ \) to lie within 0.11 eV of the putative global minimum: two based on SBP motifs, two on TBP structures. The far-IR-MPD spectra, however, were inconclusive in identifying which structures we produce in our experiments. Accordingly, we have calculated the reaction pathways for

![Figure 3. Typical calculated reaction pathways for infrared-induced dissociation of nitrous oxide on TBP motifs of (a) the Rh5O+ cluster and (b) the Rh5+ cluster. In each case, the starting point is the lowest energy calculated structure for this motif. The energy scales refer to the overall minimum energy structure of each cluster. Note that in the case of Rh5(N2O)+ we calculate a SBP structure 0.09 eV lower in energy (see Table 1). A complete set of reaction pathways calculated on all structures calculated to lie within 0.1 eV of the putative global minimum is shown in the SI associated with this article.](image-url)
The insights provided by comparison of the experimental results with the DFT simulations demonstrate the sensitivity of the method to the topology of the potential energy landscape and in particular the relative barrier heights to different processes.

ASSOCIATED CONTENT

Supporting Information. Relative energies and structures of Rh$_5$O(N$_2$O)$_n$* based on TBP and SBP motifs. Structure and energy of Rh$_5$O* and Rh$_5$O$_2$* putative global minima. Reaction pathways for the lowest lying Rh$_5$O(N$_2$O)$_n$* or Rh$_5$N$_2$O* minima. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
*(A.F.) Tel: +49 (0)30 8413 5622; fax: +49 (0)30 8413 5603 e-mail: fielicke@hhi-berlin.mpg.de. (S.R.M.) Tel +44(0)186 527 5156; fax +44(0)186 527 5410; e-mail: stuart.mackenzie@chem.ox.ac.uk.

Present Addresses
1Department of Chemistry, University of Waterloo, Waterloo, Canada.

ACKNOWLEDGMENT

We gratefully acknowledge FELIX beamtime provided by Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the skilful assistance of the FELIX staff, particularly Dr. B. Redlich and Dr. A. F. G. van der Meer. We are grateful to Dr. D. M. Rayner for providing the rhodium rod. This work is supported by the Deutsche Forschungsgemeinschaft through research grant FR 893/3-1. W.S.H. is grateful for a Ramsay Memorial Fellowship. D.J.H. thanks the Alexander-von-Humboldt-Stiftung for support. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 226716.