Thin layer preparation by physical and chemical vapor deposition

Dirk Rosenthal
Department Inorganic Chemistry
Surface Analysis
Fritz-Haber-Institut der MPG

Literature:

Definition

Vapor deposition:

Condensation of elements or compounds from the gas phase to form solid deposits.

Physical Vapor Deposition (PVD): vapor phase of the same composition as the deposit – no chemical reaction

Chemical Vapor Deposition (CVD): deposits are formed by chemical reactions at or near the deposition surface
Differences CVD/PVD

a) CVD
Chemical Reactions
Transport
Diffusion
\[T_{\text{substrate}} > T_{\text{source}} \]

b) PVD
Very clean compounds
High-vacuum
\[T_{\text{substrate}} < T_{\text{source}} \]
Outline

History

Chemical Vapor Deposition
- Precursors
- Reactors
- Energy “input” for decomposition
- Methods for investigation
- Modeling
- Chemistry
- Applications

PVD
- Thermodynamics
- Monitoring growth by XPS and AES

Summary
History

One of the oldest PVD processes occurs again yesterday: snowing

For CVD: Pyrolytic Carbon

Technical: Mond process (purification of Nickel via NiCO₄)
Typical processes during CVD

1. **Input**
 - Alkyls
 - Hydrides
 - Hydrogen

2. **Reactant Wall**
 - Heterogeneous Nucleation
 - Parasitic Deposit
 - Gas Phase Reactions
 - Homogeneous Nucleation

3. **Reactor Wall**
 - Diffusion
 - Desorption of Reaction Products
 - Thermal Decomposition
 - Growth or Incorporation

4. **Substrate**
 - Surface Diffusion

Diagram by Dirk Rosenthal, Surface Analysis, Dept. AC, Fritz Haber Institute of the MPG, Berlin, Germany
Complexity of a CVD-experiment

Diagram showing the complexity of a CVD-experiment with factors such as growth rate, composition, doping level, microstructure, electronic properties, chemistry, and geometric complexity.

Dirk Rosenthal, Surface Analysis, Dept. AC, Fritz Haber Institute of the MPG, Berlin, Germany
CVD fundamentals - Precursors

Choice of the precursor:

♦ Stability at RT
♦ Sufficient volatility at low T
♦ High purity compounds
♦ Clean reaction

Types of precursors:

♦ Hydrides
♦ Carbonyls
♦ Halides
♦ Metallo-organic or Organometallic (MOCVD or OMCVD)
CVD fundamentals - Reactors

(a) HORIZONTAL

(b) VERTICAL

(c) MULTI-WAFER BARREL

Evaluation of
- gas phase
- fluid mechanics
CVD fundamentals – Energy input and methods for investigation

Supply of Energy for decomposition:

♦ Thermal
♦ Plasma (PACVD, PECVD) Assisted, Enhanced
♦ Light (Photo-) (PACVD, PECVD)
♦ Acoustic

Methods for investigation:

In situ

♦ EXAFS
♦ UV/VIS
♦ Raman
♦ FTIR
♦ High-p XPS

Ex situ (UHV)

• ISS
• XPS, AES, UPS
• TDS
• TEM
• SIMS
CVD fundamentals - Modeling

Process parameter
(T, p, reactor geometry)

Set of partial differential Equations

Thermodynamic properties

CVD Reactor Model:
Conservation equations for Momentum, Total Mass and Energy

Transport Properties

Kinetics

Results
Thermodynamics

From Kinetic Gas Theory: (Collision rate with the wall)

\[\text{Rate} = \frac{\gamma_i P_i}{\sqrt{2\pi M_i RT}} \]

sticking coefficient \(\gamma_i = f(T, \Theta) \)

Gibbs Free Energy: from textbooks

Layer growth: Ratio of surface energies

\[\sigma_S \sim \sigma_A + \sigma_I \]
Film growth modes and adhesion

Thermodynamically derived film growth modes:

- a) Volmer-Weber
- b) Stranski-Krastanov
- c) Frank-van der Merwe

<table>
<thead>
<tr>
<th>Surface Coverage</th>
<th>(\theta < 1 \text{ ml})</th>
<th>(1 \text{ ml} < \theta < 2 \text{ ml})</th>
<th>(2 \text{ ml} < \theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>(b)</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
<tr>
<td>(c)</td>
<td>![Image]</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>

Adhesion (FM-mode) Interface effects

- Monolayer
- Compound
- Diffusion
Growth rate = $f(T)$

A) Arrhenius for chemical reactions

B) Transport limited

C) Real system
Two types of reactions are possible:

Homogeneous: gas phase reactions
Heterogeneous: at the surface

That makes modeling sometimes difficult.
Schema for $\text{SiH}_4(\text{g}) \rightarrow \text{Si(s)} + 2\text{H}_2$

Output of sensitivity analysis: 27 contributing reactions of 120

Dirk Rosenthal, Surface Analysis, Dept. AC, Fritz Haber Institute of the MPG, Berlin, Germany
Surface Chemistry of SiH₄(g)/Si(s)

\[
\begin{align*}
\text{SiH}_4(g) + \text{o} & \rightarrow \text{H} + \text{SiH}_3 \quad (1) \\
\text{SiH}_3 + \text{o} & \rightarrow \text{H} + \text{SiH}_2 \quad (2) \\
2\text{SiH}_2 & \rightarrow \text{H}_2(g) + 2\text{SiH} \quad (3) \\
2\text{SiH} & \rightarrow \text{H}_2(g) + 2\text{o} + \text{Si film} \quad (4) \\
2\text{H} & \rightarrow \text{H}_2(g) + 2\text{o} \quad (5)
\end{align*}
\]

\text{T}<500°C: (4) is rate limiting

\text{T}>700°C: (1) is rate limiting

(sticking coefficient: 2\times10^{-4} – 5\times10^{-5})
Si:Ge heterojunction bipolar transistor

Literally “built” on patterned substrates

Result? Computer!

Dirk Rosenthal, Surface Analysis, Dept. AC, Fritz Haber Institute of the MPG, Berlin, Germany
CVD fundamentals - Applications

- Microelectronics
- Optoelectronics
- Protective and decorative coatings
- Optical coatings

Where is catalysis?

Preparation of supported catalysts by CVD is up to now only of academic interest 😐

One exception?
Example 2: CVD of Carbon Nanotubes

CVD at the AC department

Two step process

1. Deposition of the catalyst (Fe or Ni on SiO$_2$ or Al$_2$O$_3$)
2. Growth of Carbon Nanotubes (C$_2$H$_4$ / H$_2$)

Problems

reproducibility
Scale up?
security
Example 2: CVD of Carbon Nanotubes

- old horizontal wobble oven
- for the new one – ask Bernd Kubias or Siegfried Engelschalt
Example 3: Boron Nitride ceramics

\[
\begin{align*}
\text{NH}_3(g) + \text{BCl}_3(g) & \rightarrow \text{BN(s)} + 3\text{HCl(g)} \\
\text{H}_3\text{B}_3\text{N}_3\text{Cl}_3(g) & \rightarrow 3\text{BN(s)} + 3\text{HCl(g)} \\
(\beta\text{-Trichloroborazole})
\end{align*}
\]

- insulating
- high T stable
- stable against oxidation

Every surface scientist who ever opened a device knows this stuff!
PVD – mostly used in surface science

From Thermodynamics we get:

<table>
<thead>
<tr>
<th>Surface Coverage</th>
<th>(\theta < 1 \text{ ml})</th>
<th>(1 \text{ ml} < \theta < 2 \text{ ml})</th>
<th>(2 \text{ ml} < \theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PVD – Monitoring growth modes with XPS and AES

The “break-argument”

Layer by layer growth (Frank-van der Merwe)

Stranski-Krastanov
p: Pre-monomolecular break
q: Monolayer break

PVD and CVD are complex methods with interdisciplinary background

- CVD is mostly used in opto- and microelectronics as well as for coatings
- Up to now application in design of supported catalysts only of academic interest
- PVD is typical tool in surface science for film deposition

Surface scientists, please never forget:

At least two breaks are necessary for Frank-van der Merwe growth mode