Characterization of porous solids and powders: Density, surface area and pore size

Christian Hess
Dept. Inorganic Chemistry, Fritz Haber Institute

0. Motivation
1. Introduction
2. Gas adsorption
3. Density measurements
4. Adsorption isotherms
5. Surface area determination
6. Mesopore analysis

0. Motivation

1. Introduction
2. Gas adsorption
3. Density measurements
4. Adsorption isotherms
5. Surface area determination
6. Mesopore analysis

Catalysis: Nanostructured materials as support

- High(er) specific surface area of nanostructured materials
 - increased activity
 - formation of isolated, catalytic sites

...an estimate based on a material with spherical particles using

\[S = \frac{4 \pi r^2}{m} \]

\[m = \frac{4}{3} \rho \pi r^3 \]

with \(\rho \sim 3 \text{ g/cm}^3 \) (typ. oxide value)

shows that for

- \(r = 1 \text{ cm} \) \(\Rightarrow S = 10^{-2} \text{ m}^2/\text{g} \)
- \(r = 1 \mu\text{m} \) \(\Rightarrow S = 1 \text{ m}^2/\text{g} \)
- \(r = 1 \text{ nm} \) \(\Rightarrow S = 1000 \text{ m}^2/\text{g} \)

\(\Rightarrow \) Creation of high surface requires nanoscale structuring
Novel mesoporous silica molecular sieve: SBA-15

TEM characterization

along a longitudinal section in a section of hexagonal pores

⇒ Silica SBA-15 is a very ordered large-pore (7 nm) material
Model catalysts based on mesoporous SBA-15

- Support properties are well defined (structural homogeneity) and tunable (pore diameter)
 - control over support properties
 - well-structured silica platform for vanadia catalysts

⇒ 3-D model catalyst for partial oxidation reactions

VO_x/SBA-15
0. Motivation

1. Introduction

2. Gas adsorption

3. Density measurements

4. Adsorption isotherms

5. Surface area determination

6. Mesopore analysis

Real surfaces - Factors affecting surface area

• Idealization: cube → $S = 6 \ l^2$
 sphere → $S = 4 \ \pi \ r^2$

 Reality: Surface roughness due to voids, pores, steps, other imperfections and surface atomic and molecular orbitals

 → real surface area > corresponding theoretical area

• **Particle size**: e.g. cube $l = 1 \ \text{m} \rightarrow S = 6 \ \text{m}^2$
 $l = 1 \ \mu\text{m} \rightarrow S = 6 \ 10^{-12} \ \text{m}^2$
 $N = 10^{18} \rightarrow S = 6 \ 10^6 \ \text{m}^2$

• **Particle shape**: e.g. two particles with same composition and mass

 \[M_{\text{cube}} = M_{\text{sphere}} \]
 \[(V\delta)_{\text{cube}} = (V\delta)_{\text{sphere}} \]
 \[l^3_{\text{cube}} = \frac{4}{3} \ \pi \ r^3_{\text{sphere}} \]
 \[(S_{\text{cube}} \ l_{\text{cube}})/6 = S_{\text{sphere}} \ r_{\text{sphere}}/3 \]

 \[
 \frac{S_{\text{cube}}}{S_{\text{sphere}}} = 2 \ \frac{r_{\text{sphere}}}{l_{\text{cube}}}
 \]
Factors affecting surface area

• **Porosity**: can overwhelm size and shape factors
e.g. powder consisting of spherical particles

\[
S_t = 4 \pi (r_1^2 N_1 + r_2^2 N_2 + \ldots + r_i^2 N_i) = 4 \pi \sum r_i^2 N_i
\]

\[
V = 4/3 \pi (r_1^3 N_1 + r_2^3 N_2 + \ldots + r_i^3 N_i) = 4/3 \pi \sum r_i^3 N_i
\]

\[
S = S_t/M = 3 \sum r_i^2 N_i/\delta \sum r_i^3 N_i
\]

for spheres of uniform radius: \[S = 3/\delta \ r \]

with \(r \sim 3 \text{ g/cm}^3 \) (typ. oxide value):

\[r = 1 \text{ cm} \rightarrow S = 10^{-2} \text{ m}^2/\text{g} \]

\[r = 1 \text{ mm} \rightarrow S = 1 \text{ m}^2/\text{g} \]

\[r = 1 \text{ nm} \rightarrow S = 1000 \text{ m}^2/\text{g} \]
0. Motivation
1. Introduction
2. Gas adsorption
3. Density measurements
4. Adsorption isotherms
5. Surface area determination
6. Mesopore analysis

Introduction

• most popular method for surface and pore size characterization (0.35-100nm)
 other methods include: - small angle X-ray scattering (SAXS)
 - neutron scattering (SANS)
 - electron microscopy (scanning and transmission)
 - NMR methods
 - mercury porosimetry

• adsorption: enrichment of components in interfacial layer
 gas adsorption → gas/solid interface

 \[W = f(P,T,E) \]

 \(W \): weight of gas adsorbed (per unit weight adsorbent)
 \(E \): interaction potential between adsorbate and adsorbent

 \(T = \text{const.} \) → \(W = f(P,E) \)

 plot of \(W \) vs. \(P \) referred to as sorption isotherm
Physical adsorption forces

- Physical adsorption forces
 Thermodynamics: \(\Delta G = \Delta H - T\Delta S \)
 \(\rightarrow \Delta H \) always negative for adsorption

- van der Waals’ forces: *dispersion forces*, ion-dipole, ion-induced dipole, dipole-dipole, quadrupole

- *physisorption* on a planar surface:
 London-van der Waals’ interaction energy:
 \[
 U_s(z) = C_1 z^{-9} - C_2 z^{-3}
 \]
 \(C_1, C_2 \): constants

 \(\rightarrow \) surface excess: \(n^\sigma = n^g - \delta^g V^g \)

 \[
 n^g = n_{ads} + n_{bulk} \]
 \[
 V^g = V_{ads} + V_{bulk} \]

 \[
 n^\sigma = n_{ads} - \delta^g V_{ads} = (\delta_{ads} - \delta^g)V_{ads}
 \]

 \(\rightarrow \) at low \(T \): \(\delta^g << \delta_{ads} \Rightarrow n^\sigma \sim n_{ads} \)

 (e.g. \(\text{N}_2 \) adsorption at 77K)
Experimental

- Experimental
 measure n_{ads} vs P under static or quasi-equilibrium conditions using
 - *volumetric* (manometric) methods
 - *gravimetric* methods

Gravimetric method:
based on sensitive microbalance and pressure gauge
→ adsorbed amount measured directly (sensitivity $\sim 10^{-8}$ g)
→ adsorbent not in direct contact with thermostat (→ T control difficult!)

Volumetric method:
based on calibrated volumes
and pressure measurements
→ known amounts of gas are admitted stepwise into cell
→ V_{ads} difference between gas admitted and gas filling void volume
→ requires manifold (V_m) and void volume (V_v) to be accurately known
Experimental

→ V_m determination via expansion of He into calibrated reference volume V_R

\[
\frac{P_1 V_m}{T_m} = \frac{P_2 (V_m + V_R)}{T_m}
\]

→ V_v determination via expansion of He into sample cell volume occupied by adsorbent

\[
\frac{P_3 V_m}{T_m} = \frac{P_4 (V_m + V_v)}{T_m}
\]

→ total volume of adsorptive dosed: $V_d = \left(\frac{P_m V_m}{T_m} - \frac{PV_m}{T_{mc}} \right) \times \frac{T}{P}$

→ adsorbed volume: $V_s = V_d - V_v$

→ correction for non-ideality of real gases: $V_s = V_d - (V_v + PV_v \alpha)$

α: non-ideality factor

e.g. N_2: $\alpha = 6.6 \times 10^{-5}$ torr$^{-1}$(77K)
0. Motivation
1. Introduction
2. Gas adsorption
3. Density measurements
4. Adsorption isotherms
5. Surface area determination
6. Mesopore analysis

• Density measurements
e.g. for permeametry
volume specific surface area

true density = \frac{\text{mass}}{\text{volume occupied by mass}}

→ contribution by pores/internal voids must be subtracted

No porosity: true density measured by displacement of fluid
→ accuracy: fluid volume determination

Porosity: fluid displaced by powder does not penetrate (all) pores
→ apparent density < true density
→ true density via gas displacement (pycnometer)
using e.g. He (inert, small size)
Experimental

• sample cell:

\[P_a (V_c - V_p) = n_a R T_a \quad (1) \]
\[P_1 (V_c - V_p) = n_1 R T_a \quad (2) \]

• open valve 2:

\[P_2 (V_c - V_p + V_R) = n_1 R T_a + n_R R T_a \]
\[P_a V_R \]

(2) in (3): \[P_2 (V_c - V_p + V_R) = P_1 (V_c - V_p) + P_a V_R \quad (4) \]

\[V_p = V_c + V_R \frac{1 - (P_a / P_2)}{1 - (P_1 / P_2)} \]
0. Motivation
1. Introduction
2. Gas adsorption
3. Density measurements
4. Adsorption isotherms
5. Surface area determination
6. Mesopore analysis

Pore size and adsorption potential

- **Classification:**
 - Macropore: $d > 50\text{nm}$
 - Mesopore: $2\text{nm} < d < 50\text{nm}$
 - Micropore: $d < 2\text{nm}$

- **Internal Pore Width:**
 - Nearly flat surface
 - Fluid-wall and fluid-fluid i.a.
 - (→ capillary condensation)
 - Fluid-wall i.a., overlapping ads. potential
Classification of adsorption isotherms

- **classification** → IUPAC 1985

- **type I**: ads. limited to a few layers (chemisorption, micropores)

- **type II**: unrestricted mono/multilayer ads. → at point B monolayer (non-porous, macropores)

- **type III**: unrestricted multilayer ads.

- **type IV**: monolayer/multilayer ads., limited uptake, hysterisis due to pore condens. (mesopores)

- **type V**: multilayer ads. (→ type III), pore condensation (hysterisis)

- **type VI**: stepwise multilayer ads. on a uniform, non-porous surface
0. Motivation
1. Introduction
2. Gas adsorption
3. Density measurements
4. Adsorption isotherms
5. Surface area determination
6. Mesopore analysis

Langmuir isotherm

- Langmuir isotherm: → applicable to chemisorption and type I physisorption
 - identical adsorption sites
 - no interactions between adsorbed molecules
 - \(\Delta H_{\text{ads}} \neq f(\theta)\)

adsorption of A: \(v_a = k_a P (1 - \theta)\)
desorption of A: \(v_a = k_a \theta\)
equilibrium: \(k_a P (1 - \theta) = k_a \theta\)

\[
\theta = \frac{KP}{1 + KP} \quad K = \frac{k_a}{k_a}
\]

\[
\theta = \frac{V}{V_m}
\]

substitute/rearrange:

\[
\frac{1}{V} = \frac{1}{V_m} + \frac{1}{V_m KP}
\]

plot \(1/V\) vs \(1/P\) → straight line:
intercept \(1/V_m\) → \(n_{\text{ads}}\)

surface area: \(S_t = n_{\text{ads}} N_A A_x\) \(A_x\): cross-sectional area
Brunauer, Emmett and Teller (BET) theory

- BET isotherm:
 - first layer serves as substrate for further adsorption (physisorption)
 - almost universally used → accommodates isotherm types I-V

→ derivation BET

BET isotherm: \[
\frac{1}{V[(P_0 / P) - 1]} = \frac{1}{V_m C} + \frac{C - 1}{V_m C} \left(\frac{P}{P_0} \right)
\]

C: BET constant

\(V_m \rightarrow n_{ads} \)

surface area: \[
S_t = n_{ads} N_A A_x
\]

\(n_{ads} M = W \)
Single point BET method

\[
\frac{1}{W[(P_0/P) - 1]} = \frac{1}{W_mC} + \frac{C - 1}{W_mC} \left(\frac{P}{P_0}\right)
\]

plot \(1/W[(P_0/P)-1]\) vs \(P/P_0\)

→ usually straight line

within \(0.05 < P/P_0 < 0.35\)

intercept: \(b = \frac{1}{W_mC}\)

slope: \(m = \frac{C - 1}{W_mC}\)

\[W_m = \frac{1}{b + m}, \quad C = \frac{m}{b} + 1\]

• Single point BET method: → simplicity and speed with little loss of accuracy

\[\frac{m}{b} = C - 1\]

for large values of \(C\) → \(m \gg b\)

→ \(b \approx 0\)

\[\frac{1}{W[(P_0/P) - 1]} = \frac{C - 1}{W_mC} \left(\frac{P}{P_0}\right)\]
Comparison of single point and multipoint methods

\[
\frac{(W_m)_{mp} - (W_m)_{sp}}{(W_m)_{mp}} = \frac{1 - P / P_0}{1 + (C - 1)P / P_0}
\]

mp: multipoint
sp: single point

<table>
<thead>
<tr>
<th>C</th>
<th>(P/P_0 = 0.1)</th>
<th>(P/P_0 = 0.2)</th>
<th>(P/P_0 = 0.3)</th>
<th>((P/P_0)_m^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.90</td>
<td>0.80</td>
<td>0.70</td>
<td>0.50</td>
</tr>
<tr>
<td>10</td>
<td>0.47</td>
<td>0.29</td>
<td>0.17</td>
<td>0.24</td>
</tr>
<tr>
<td>50</td>
<td>0.17</td>
<td>0.07</td>
<td>0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>100</td>
<td>0.08</td>
<td>0.04</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>1000</td>
<td>0.009</td>
<td>0.004</td>
<td>0.002</td>
<td>0.003</td>
</tr>
</tbody>
</table>

(P/P_0)_m^ is the relative pressure that gives monolayer coverage according to a multipoint determination.

BET isotherm: \(W = W_m\)

\[
\rightarrow \left(\frac{P}{P_0} \right)_m = \frac{\sqrt{C - 1}}{C - 1}
\]

\[
\rightarrow \frac{(W_m)_{mp} - (W_m)_{sp}}{(W_m)_{mp}} = \frac{\sqrt{C - 1}}{C - 1} = \left(\frac{P}{P_0} \right)_m
\]
Applicability of the BET theory

- accommodates isotherm types I-V
- good agreement between theory and exp. within $0.05 < P/P_0 < 0.30$

why?

- variation from linearity at $P/P_0 > 0.30$
 $\rightarrow \Delta H_{\text{ads}}$ varies throughout the layers
- porosity: micropores/mesopores \sim2-4nm
 pore filling \leftrightarrow mono/multilayer
Cross-sectional area

Surface area: \(S_t = n_{ads} N_a A_x \)
\(A_x \): cross-sectional area (temperature, ads.-ads. i.a., ads.-surface i.a., texture)

- Approximation of \(A_x \) of adsorbate molecules
 → spherical, exhibiting bulk liquid properties

\[
A_x = 1.091 \times \left(\frac{\bar{V}}{N_A} \right)^{2/3}
\]

<table>
<thead>
<tr>
<th>Adsorptive Temperature</th>
<th>Cross-sectional area (Å²)[15]</th>
<th>Customary Value (Å²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen 77.35 K</td>
<td>13.0 - 20.0</td>
<td>16.2</td>
</tr>
<tr>
<td>Argon 77.35 K</td>
<td>10.0 - 19.0</td>
<td>13.8</td>
</tr>
<tr>
<td>Argon 87.27 K</td>
<td>9.7 - 18.5</td>
<td>14.2</td>
</tr>
<tr>
<td>Krypton 77.35 K</td>
<td>17.6 - 22.8</td>
<td>20.2</td>
</tr>
<tr>
<td>Xenon 77.35 K</td>
<td>6.5 - 29.9</td>
<td>16.8</td>
</tr>
<tr>
<td>Carbon Dioxide 195 K</td>
<td>14 - 22.0</td>
<td>19.5</td>
</tr>
<tr>
<td>Carbon Dioxide 273 K</td>
<td></td>
<td>21.0</td>
</tr>
<tr>
<td>Oxygen 77.35 K</td>
<td>13 - 20</td>
<td>14.1</td>
</tr>
<tr>
<td>Water 298.15 K</td>
<td>6 - 19</td>
<td>12.5</td>
</tr>
<tr>
<td>n-Butane 273.15 K</td>
<td>36 - 54</td>
<td>44.4</td>
</tr>
<tr>
<td>Benzene 293.15 K</td>
<td>73 - 49</td>
<td>43.0</td>
</tr>
</tbody>
</table>

→ \(N_2 \) is standard BET adsorptive

- Surfaces of high polarity (such as silica) may show significant deviation…
e.g. \(N_2 \) (77.35 K): \(A_x = 13.5 \) Å²
known amount of air is drawn through compacted bed of powder → resistance to air flow is a function of the surface area

- ambient p and T ($\lambda < d$): gas collisions → viscous flow → ignores blind pores → `envelope` area of particle
- reduced p ($\lambda \approx d$): → no flow retardation near wall
- small p ($\lambda > d$): gas-wall collisions (→ diffusion) → senses blind pores and gives good agreement with BET

viscous flow through cylindrical pores → Poiseuille

$$S^2 = \left(\frac{\Delta P}{l} \right) \left[\frac{p^3}{(1 - p)^2} \right] \left(\frac{1}{f\delta^2\eta v} \right)$$

p: porosity, v: velocity

$$f = 2\left(\frac{l}{l_p}\right)^2$$

aspect ratio

→ aspect ratio highly dependent upon particle size and shape (typically $f = 3-6$)
0. Motivation

1. Introduction

2. Gas adsorption

3. Density measurements

4. Adsorption isotherms

5. Surface area determination

6. Mesopore analysis

Adsorption in mesopores - multilayer adsorption

- Adsorption in mesopores:
 depends on fluid-wall and attractive fluid-fluid interactions
 → multilayer adsorption and pore condensation
 - novel ordered mesoporous materials (e.g. MCM, SBA)
 - Microscopic methods (e.g. NLDFT)

- Multilayer adsorption:
 Fluid in contact with planar surface
 → thickness \(l \): \(l \rightarrow \infty \) for \(P/P_0 \rightarrow 1 \)

\[
\Delta \mu_a = \mu_a - \mu_0 = -RT \ln(P/P_0) \\
= -\alpha \times l^{-m} \\
\text{(m typ. 2.5-2.7)}
\]

\(\alpha \): fluid-wall interaction parameter
\(\mu_a \): chem. potential of adsorbed liquid-like film
\(\mu_0 \): chem. potential of bulk fluid at gas-liquid coexistence
Pore condensation – modified Kelvin equation

• in pore l can not grow unlimited

\[\Delta \mu = \Delta \mu_a + \Delta \mu_c \]

for small l: \[\Delta \mu \approx \Delta \mu_a = -\alpha \times l^{-m} \]

for large l: \[\Delta \mu \approx \Delta \mu_c = -2 \gamma \cos \theta / a \Delta \rho \]

a: core radius
(a = r_p - l; r_p: pore radius)

\(\gamma \): surface tension
\(\Delta \rho = \rho^l - \rho^g \)

• at critical thickness \(l_c \):

_***pore condensation*** (i.e. gas-like state → liquid-like state at \(\mu < \mu_0 \))

Kelvin equation:

\[\ln(P / P_0) = \frac{-2 \gamma \bar{V}}{aRT} \]

for complete wetting, i.e. \(\theta = 0 \)
Methodes based on modified Kelvin equation

- Calculation of the pore size distribution:
 - from isotherm: V_{ads}/g catalyst as function of P/P_0
 - Kelvin equ.: calculate a for $\theta=0$ as function of P/P_0
 - calculate statistical film thickness I: $l = (W_a/W_m)\tau \rightarrow r_p = a - l$
 - calculate \bar{a} and \bar{r}_p in each decrement from successive entries
 - calculate ΔI, the change in film thickness in successive steps
 - calculate ΔV_{ads}, the change ads. volume in successive steps
 - calculate ΔV_{liq}, corresponding to ΔV_{ads}
 - calculate $\Delta l \Sigma S$, the volume change of film remaining adsorbed
 - calculate the pore volume V_p:
 $$\begin{align*}
 \Delta V_{liq} &= \pi \cdot \bar{a} \cdot l_p + \Delta l \Sigma S \\
 V_p &= \pi \cdot \bar{r}_p^2 \cdot l_p \\
 V_p &= \left(\frac{\bar{r}_p}{\bar{a}}\right)^2 [\Delta V_{liq} - (\Delta l \Sigma S)]
 \end{align*}$$
 - calculate the surface area S: $S = \frac{2V_p}{\bar{r}_p}$
Testing the modified Kelvin equation

• direct exp. test of Kelvin eq. (MCM, SBA) and comparison with XRD, TEM results → Kelvin eq. underestimates pore size

• accurate pore size analysis by applying microscopic models based on stat. mech. → local fluid structure near curved wall → capture properties of confined fluid
Adsorption vs desorption branch of hysteretic isotherm

- ordered mesoporous materials
 → desorption branch of hysteresis loop reflects equilibrium phase transition
- disordered mesoporous materials
 → desorption branch not necessarily correlated with the pore size
 e.g. tensile strength effect → artifact!
0. Motivation
1. Introduction
2. Gas adsorption
3. Density measurements
4. Adsorption isotherms
5. Surface area determination
6. Mesopore analysis