A charged defect in a homogenous electron gas gives rise to "screening". What is the spatial extent of the perturbed electron distribution?

$\delta U(r)$ with $\delta U(r) \cdot e << E_F$: perturbation of a slowly varying local potential; δU shifts $D(E)$ and an electron density δn is distributed in the vicinity.

$\delta n = D(E_F) \cdot |e| \delta U$

Poisson equation:

$$\nabla^2 (\delta U(r)) = \frac{e^2}{\varepsilon_0} D(E_F) \delta U(r)$$

Spherical coordinates yield the solution

$$\delta U(r) = \alpha \frac{e^{-r/r_{TF}}}{r}$$

r_{TF} is the Thomas-Fermi screening length with

$$r_{TF} = \sqrt{\frac{\varepsilon_0}{e^2 D(E_F)}}$$

For the free electron gas, $D(E_F) = \frac{3}{2} \frac{n}{E_F}$ and

$$r_{TF} \approx \frac{1}{2} \left(\frac{a_0^3}{n} \right)^{1/6}.$$ $D(E_F)$

Higher electron density leads to a shorter r_{TF}. For Cu, e.g., $n = 8.5 \cdot 10^{22} \text{ cm}^{-3}$ and $r_{TF} = 0.55 \text{ Å}$.

Chemical potential

- Region of normal electron concentration
- Region of enhanced electron concentration

Poisson equation

- 0
- r

Separation r/r_{TF}

- 0
- 2
- 4
- 6

Energy E

- 0
- n'
- n
- E_F

Potential energy $V(r)$

- $\cdots -\frac{1}{r}$
- $-e^{-r/r_{TF}}$

Density of states D

- 0
- δU
Above a critical electron density n_C the screening length r_{TF} becomes so small that electrons become delocalized → **metallic behaviour**

\[n > n_C \Rightarrow r_{TF} < R_0/2, \]

\[n < n_C \Rightarrow r_{TF} > R_0/2; \quad R_0 \text{ nearest neighbour distance of cores} \]

Insulator with localized electrons at low carrier density:

\[r_{TF} \gg a_0, \text{ with Bohr radius } a_0 = 0.53 \, \text{Å}. \]

\[r_{TF}^2 \approx \frac{1}{4} \frac{a_0}{n^{1/3}} \gg a_0^2 \]

Mott's estimate: \[n^{-1/3} \gg 4a_0 \]

Metal-insulator transition:

- Electrical conductivity σ changes by orders of magnitude from metallic to insulating.
- Observed with increasing doping of a semiconductor by donor or acceptor atoms.
- The transition occurs at a concentration, where the ground-state wave functions of neighboring impurity atoms overlap.